Math 2050, summary of Week 7

1. Series

Definition 1.1. Given a sequence $\{x_n\}_{n=1}^{\infty}$, the series generated by ${x_n}_{n=1}^{\infty}$ is given by $s_i = \sum_{k=1}^i x_k$.

Examples: The followings are the most important (and fundamental) examples of series.

- (1) Geometric series: $\sum_{i=1}^{k} r^{i}$; (2) Harmonic series $\sum_{n=1}^{k} n^{-1}$; (3) *p*-series $\sum_{n=1}^{k} n^{-p}$;

Clearly, series is a special case of sequence. We are interested in their convergence since they are special and appear quite often.

We start with the elementary nature of series.

Theorem 1.1 (The *n*-the term test). Suppose $\sum x_n$ converges, then $x_n \to 0.$

E.g. $\sum (-1)^n$ is divergent since $(-1)^n$ does not converge to 0. But it is far from equivalent. For example, $\sum k^{-1}$ is unbounded and divergent (as shown in previous lecture), but $k^{-1} \to 0$ as $k \to +\infty$.

Since the theory of sequence is better developed (at this stage), we now translate the corresponding Theorem in the setting of series.

Theorem 1.2 (Cauchy criterion). The series $\sum x_n$ is convergent if and only if $\forall \varepsilon > 0, \exists N$ such that for all m > n > N, we have

$$|\sum_{k=n+1}^m x_k| < \varepsilon.$$

Theorem 1.3 (monotone convergence theorem). Suppose $x_n \ge 0$ for all $n \in \mathbb{N}$, then the series $\sum x_n$ is convergent if and only if there is M > 0 such that for all $m \in \mathbb{N}$,

$$\sum_{k=1}^{m} x_k \le M.$$

Example (Useful trick): $\sum k^{-2}$ is convergent. By MCT, it suffices to show the boundedness.

(1.1)

$$\sum_{k=1}^{m} \frac{1}{k^2} \leq 1 + \sum_{k=2}^{m} \frac{1}{k^2}$$

$$\leq 1 + \sum_{k=2}^{m} \frac{1}{k(k-1)}$$

$$\leq 1 + \sum_{k=2}^{m} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

$$\leq 2 - \frac{1}{m}$$

$$< 2.$$

And hence it is convergent.

This can be generalized further as one can see the argument only relies on some comparison after some large index.

Theorem 1.4 (Comparison Test). Suppose $\{x_n\}$ and $\{y_n\}$ are sequence such $0 \le x_n \le y_n$ for all $n > k_0$. Then we have

- (1) $\sum x_n$ is convergent if $\sum y_n$ is convergent. (2) $\sum y_n$ is divergent if $\sum x_n$ is divergent.

Therefore, one only need to find some "reference" series to determine the convergence.

The convergence of the fundamental Examples:

- (a) $\sum r^k$ is convergent if r < 1 and is divergent if $r \ge 1$; (b) $\sum k^{-p}$ is convergent if p > 1 and is divergent if $p \le 1$.

2. Function

Let $A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$ be a function on A.

Ultimate Objective: Study the continuity of f.

We are only interested in some "meaningful" point.

Definition 2.1. Let $A \subset \mathbb{R}$. A real number c is said to be a cluster point of A if for all $\delta > 0$, there is $x \in A$ such that $0 < |x - c| < \delta$.

It is easy to see that equivalently we can approximate c by sequence in $A \setminus \{c\}$.

Theorem 2.1. Let $A \subset \mathbb{R}$. Then c is cluster point of A if and only if there is $\{a_n\} \subset A$ such that $a_n \neq c$ and $a_n \rightarrow c$ as $n \rightarrow +\infty$.

Examples:

- (1) A = (0, 1), then cluster points are [0, 1];
- (2) $A = \{p_i\}_{i=1}^k$, then there are no cluster points;
- (3) $A = \{k^{-1} : k \in \mathbb{N}\}, \text{ then cluster point is } \{0\};$
- (4) $A = (0, 1) \cap \mathbb{Q}$, then cluster points are [0, 1].

Cluster points are those points which is NOT isolated. Those are what we care!

Theorem 2.2. Let $A \subset \mathbb{R}$ and c is a cluster point of A, $f : A \to \mathbb{R}$. Then $L \in \mathbb{R}$ is said to be the limit of f at c if for all $\varepsilon > 0$, there is $\delta > 0$, such that for all $x \in A$ with $0 < |x - c| < \delta$, we have $|f(x) - L| < \varepsilon$. In this case, we will denote $\lim_{x\to c} f = L$.

The notion is reasonable since the limit is unique if exists.

Theorem 2.3. Let $A \subset \mathbb{R}$ and c is a cluster point of A, $f : A \to \mathbb{R}$. Then f can at most have a single limit at c.

The definition is usually not user friendly when we try to argue the opposite. We therefore need some alternative perspective of the definition.

Theorem 2.4 (Sequence criterion). Let $A \subset \mathbb{R}$ and c is a cluster point of $A, f : A \to \mathbb{R}$. Then we have $\lim_{x\to c} f = L$ if and only if for any sequence $\{a_n\} \subset A \setminus \{c\}$ so that $a_n \to c$, we have $f(a_n) \to L$.

The contra-positive statement is given as follows.

Theorem 2.5 (Divergent criterion). Let $A \subset \mathbb{R}$ and c is a cluster point of $A, f : A \to \mathbb{R}$. Then

- (1) f does not have a limit L at c if and only if $\exists \varepsilon_0 > 0$, $\{x_n\} \subset A \setminus \{c\}$ such that $x_n \to c$ but $|f(x_n) L| \ge \varepsilon_0$ for all n.
- (2) f does not have a limit at c if and only if $\exists \{x_n\} \subset A \setminus \{c\}$ such that $x_n \to c$ but $\{f(x_n)\}_{n=1}^{\infty}$ is divergent.

Examples: Direct application of the divergent criterion is to show that $\lim_{x\to 0} x^{-1}$ and $\lim_{x\to 0} \sin(x^{-1})$ does not exist.