
Math 2050, summary of Week 7

1. Series

Definition 1.1. Given a sequence {xn}∞n=1, the series generated by

{xn}∞n=1 is given by si =
∑i

k=1 xk.

Examples: The followings are the most important (and fundamen-
tal) examples of series.

(1) Geometric series:
∑k

i=1 r
i;

(2) Harmonic series
∑k

n=1 n
−1;

(3) p-series
∑k

n=1 n
−p;

Clearly, series is a special case of sequence. We are interested in their
convergence since they are special and appear quite often.

We start with the elementary nature of series.

Theorem 1.1 (The n-the term test). Suppose
∑
xn converges, then

xn → 0.

E.g.
∑

(−1)n is divergent since (−1)n does not converge to 0. But it
is far from equivalent. For example,

∑
k−1 is unbounded and divergent

(as shown in previous lecture), but k−1 → 0 as k → +∞.

Since the theory of sequence is better developed (at this stage), we
now translate the corresponding Theorem in the setting of series.

Theorem 1.2 (Cauchy criterion). The series
∑
xn is convergent if

and only if ∀ε > 0,∃N such that for all m > n > N , we have

|
m∑

k=n+1

xk| < ε.

Theorem 1.3 (monotone convergence theorem). Suppose xn ≥ 0 for
all n ∈ N, then the series

∑
xn is convergent if and only if there is

M > 0 such that for all m ∈ N,
m∑
k=1

xk ≤M.
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Example (Useful trick):
∑
k−2 is convergent. By MCT, it suffices

to show the boundedness.
m∑
k=1

1

k2
≤ 1 +

m∑
k=2

1

k2

≤ 1 +
m∑
k=2

1

k(k − 1)

≤ 1 +
m∑
k=2

(
1

k − 1
− 1

k

)
≤ 2− 1

m
< 2.

(1.1)

And hence it is convergent.

This can be generalized further as one can see the argument only
relies on some comparison after some large index.

Theorem 1.4 (Comparison Test). Suppose {xn} and {yn} are sequence
such 0 ≤ xn ≤ yn for all n > k0. Then we have

(1)
∑
xn is convergent if

∑
yn is convergent.

(2)
∑
yn is divergent if

∑
xn is divergent.

Therefore, one only need to find some ”reference” series to determine
the convergence.

The convergence of the fundamental Examples:

(a)
∑
rk is convergent if r < 1 and is divergent if r ≥ 1;

(b)
∑
k−p is convergent if p > 1 and is divergent if p ≤ 1.

2. Function

Let A ⊂ R and f : A→ R be a function on A.

Ultimate Objective: Study the continuity of f .

We are only interested in some ”meaningful” point.

Definition 2.1. Let A ⊂ R. A real number c is said to be a cluster
point of A if for all δ > 0, there is x ∈ A such that 0 < |x− c| < δ.

It is easy to see that equivalently we can approximate c by sequence
in A \ {c}.
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Theorem 2.1. Let A ⊂ R. Then c is cluster point of A if and only if
there is {an} ⊂ A such that an 6= c and an → c as n→ +∞.

Examples:

(1) A = (0, 1), then cluster points are [0, 1];
(2) A = {pi}ki=1, then there are no cluster points;
(3) A = {k−1 : k ∈ N}, then cluster point is {0};
(4) A = (0, 1) ∩Q, then cluster points are [0, 1].

Cluster points are those points which is NOT isolated. Those
are what we care!

Theorem 2.2. Let A ⊂ R and c is a cluster point of A, f : A → R.
Then L ∈ R is said to be the limit of f at c if for all ε > 0, there
is δ > 0, such that for all x ∈ A with 0 < |x − c| < δ, we have
|f(x)− L| < ε. In this case, we will denote limx→c f = L.

The notion is reasonable since the limit is unique if exists.

Theorem 2.3. Let A ⊂ R and c is a cluster point of A, f : A →
R.Then f can at most have a single limit at c.

The definition is usually not user friendly when we try to argue
the opposite. We therefore need some alternative perspective of the
definition.

Theorem 2.4 (Sequence criterion). Let A ⊂ R and c is a cluster point
of A, f : A → R. Then we have limx→c f = L if and only if for any
sequence {an} ⊂ A \ {c} so that an → c, we have f(an)→ L.

The contra-positive statement is given as follows.

Theorem 2.5 (Divergent criterion). Let A ⊂ R and c is a cluster point
of A, f : A→ R. Then

(1) f does not have a limit L at c if and only if ∃ε0 > 0, {xn} ⊂
A \ {c} such that xn → c but |f(xn)− L| ≥ ε0 for all n.

(2) f does not have a limit at c if and only if ∃{xn} ⊂ A \ {c} such
that xn → c but {f(xn)}∞n=1 is divergent.

Examples: Direct application of the divergent criterion is to show
that limx→0 x

−1 and limx→0 sin(x−1) does not exist.


